Mean ($\overline{\mathbf{X}}$) and Standard Deviation Test for Outliers | Airport: | | linois Project: | | | |------------------------------------|-------------------------------|---|----------------------------------|--| | Paving
Start Date: | Δ | .I.P. Project: | | | | Paving Finish Date: | | Mix Design(s) Number: | | | | 1. Calculation of | Mean (\overline{X}) and Sta | ndard Deviation | (S) | | | Lot- Sublot No. | 1
X | 2
X - X | 3
(X - X) ² | TOTAL | | | | | | | No. Sublots (N) = | | | | | \overline{x} | = (Total Column 1) / N = | | | | | S = \(\sqrt{(} | (Total Column 3)/(N-1)) = | | | | | 2. Test for Outlier | | | | | | Cho | oose the X from column 1 tha | t is the furthest from $\overline{X} =$ | | | | $T = (X - \overline{X}) / S =$ | = | | | | | Note : Difference between | en the suspect test value ar | nd the Mean (\overline{X}). | | | | Critical "T" Value for N = | = | | | | | | <u>Outlier:</u> | | | | | Resident Engineer:
Consultant: | | | | |